Notes on How to Realize in the Lab the Delayed Choice
Method with Haunted Quantum Entanglement for Choosing
at a Distance an Overall Distribution Exhibiting Either
Which-Way Information or Interference
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| have worked on an idea for a number of years that involves a
delayed choice experiment with haunted quantum entanglement. |
extended the idea of Greenberger and YaSin's haunted measurement

to entanglement and obtained interesting results.

Recently, | presented a poster on this experiment at the 2012
APS March Meeting entitled "Delayed Choice Method with Haunted
Quantum Entanglement for Choosing at a Distance an Overall
Distribution Exhibiting Either Which-Way Information or Interference”
(http://meetings.aps.org/link/BAPS.2012.MAR.K1.303). One
implemenation of this method could be done with some changes to the
guantum eraser experiment (Kim, Yu, Kulik, Shih, and Scully, Phys.
Rev. Lett., 84, 1-5, 2000) which was purely optical. There are only a

few labs in the world who could do such an experiment

Here is the abstract from my poster at the 2012 Spring APS

meeting:

"Particles 1 and 2 are entangled at one of two possible
locations (providing which-way info). The entangled particles
physically separate from each other where one particle [P1] preserves
the ww information that accompanied entanglement and the other

particle's motion [P2] supports interference in P2's overall distribution
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due to the device setup. With this step, P1 now supplies which-way
info to P2 due to their entanglement.

Next, there is a delayed choice at a distance.

Choice A: P1 and the ww info it carries are essentially lost by
releasing many other particles of similar character to P1 into the
container with P1 before P2 is detected and before ww info for P1
becomes available to the environment or an irreversible ww
measurement is made on P1. (The entanglement is then lost and so
is the ww info supplied by P1 to P2.)

Choice B: P1 that carries ww info is not lost. (The
entanglement is not lost and neither is the ww info P1 has supplied to
P2)

Repeat runs of method with choice A 100 times consecutively
to develop an overall interference distribution pattern for P2 [not
fringes and anti-fringes obtained in a quantum eraser], or instead
repeat runs of method with choice B 100 times consecutively to
develop an overall ww distribution pattern for P2."

| have attached the poster. | have also attached some drawings
that indicate the changes that would be made to Kim's quantum
eraser experiment. The Kim experiment is page 3 of the drawings
(Fig. 5). My changes are on pages 6 and 7 (Figs. 8 and 9).

| also included drawings about how similar changes could be
made to the micromaser thought experiment of Scully and his
colleagues (Nature, vol. 351, p. 111, 1991). Professor Scully's
micromaser experiments are on pages 1 and 2 (Figs. 3 and 4). In the
figure on page 2, the micromaser cavities are filled with photons
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similar to the photon that is emitted by the atom passing through the
cavity system. My changes are on pages 4 and 5 (Figs. 6 and 7).

| very recently found that a type of ultrafast switch might work
with a single entangled photon (Hall-Altepeter-Kumar switch) might
make the experiment feasible to perform. The switch routs an
entangled photon along one of two possible routes. | attached 2
references to this work. | confirmed with one of the developers of the
switch that the switch cold be used in the experimental setup.

Two such switches in the paths of the idler photon (one along
each path) could be thrown on or off before the signal photon reaches
the detector screen. If the switches were off, the idler photon would
be detected by one of the detectors located at the exit of the container
through which the idler photon passes (which way distribution
pattern). If the switches were turned on at the same time, the two
possible paths of the idler photons would be diverted so that the idler
photon would be lost in other similar photons before it was detected
and before the signal photon reaches its detection screen
(interference distribution pattern).

| had another idea about how to "lose" the idler photon if the
idler photon traveled along either possible path in the interferometer
and a HAP (Hall, Altepeter, Kumar) switch located along each of the
two possible paths is in the closed position. | found an optical
microcavity, and | thought that perhaps it could be filled with many
photons similar to idler photon. | was not sure about this, so | asked
an expert in the field who worked with Professor Vahala at Cal Tech.
The professor responded that an optical microcavity could be used for
the purpose | intended, including that the photons would not leak into
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the environment around the cavity. So now there are the pieces to
"lose" the idler photon in many other similar photons so that this
process can be realized in an experiment. It appears that the

experiment | proposed in theory can now be realized experimentally.
References

Optical Microcavities, Nature, Kerry J. Vahala, vol, 424. 14 August
2003, ps. 839-846.

Ultrafast Switching of Photonic Entanglement, Matthew A. Hall,
Joseph B. Altepeter, and Prem Kumar, Phys. Rev. Lett. 106, 053901
(2011) [4 pages]; also arXiv:1008.4879v2 [quant-ph]
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DELAYED CHOICE METHOD WITH HAUNTED QUANTUM ENTANGLEMENT FOR
CHOOSING AT A DISTANCE AN OVERALL DISTRIBUTION EXHIBITING
EITHER WHICH-WAY INFORMATION OR INTERFERENCE
DOUGLAS SNYDER — APS MARCH MTG 2012 - K1.00303

ENTANGLEMENT BETWEEN PARTICLES
1 AND 2 WHERE ENTANGLEMENT
OCCURS AT ONE OF TWO POSSIBLE
LOCATIONS (PROVIDING WHICH WAY
INFORMATION).

ENTANGLED PARTICLES PHYSICALLY
SEPARATE FROM EACH OTHER
WHERE ONE PARTICLE [P1]
PRESERVES WW INFORMATION THAT
ACCOMPANIED ENTANGLEMENT AND
THE OTHER PARTICLE’S MOTION [P2]
SUPPORTS INTERFERENCE IN P2’S
OVERALL DISTRIBUTION DUE TO
DEVICE SETUP.

With this step,
Particle 1 now
supplies which-
way
information to
Particle 2 due
to the
entanglement.

DELAYED
CHOICE AT A
DISTANCE

CHOICE A

ESSENTIALLY LOSE P1 AND THE WW
INFORMATION IT CARRIES BY
RELEASING MANY OTHER PARTICLES
OF SIMILAR CHARACTER TO P1INTO
CONTAINER WITH P1 BEFORE P2 IS
DETECTED AND BEFORE WW INFO
BECOMES AVAILABLE TO THE
ENVIRONMENT OR AN IRREVERSIBLE
WW MEASUREMENT IS MADE ON P1.
(THE ENTANGLEMENT IS THEN LOST
AND SO IS THE WW INFORMATION

SUPPLIED BY P1 TO
P2)

CHOICE B

DO NOT LOSE P1 THAT CARRIES WW
INFORMATION.
(THE ENTANGLEMENT IS NOT LOST AND
NEITHER IS THE WW INFORMATION P1
HAS SUPPLIED TO P2.)

A\ 4

Repeat runs of device with
choice A 100 times
consecutively to develop overall
interference distribution pattern
for P2.

Y

Repeat runs of device with
choice B 100 times
consecutively to develop
overall ww distribution
pattern for P2.
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